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Abstract

A model structure of the aperiodic cubic phase (a cubic quasicrystal) has been constructed as a
periodical packing of hierarchical octahedral clusters which were composed of truncated
tetrahedra (Friauf-Laves polyhedra) and chains of Frank—Kasper polyhedra with 14 vertices.
The construction of the hierarchical model for the cubic aperiodic phase became possible due to
the discovery of a new space subdivision with equal edges and with vertices belonging to two
orbits of the space group Fm3m. The subdivision is characterized by unique values and unique
relations between the coordinates of the starting points of two orbits. Calculated x-ray
diffraction patterns for the proposed hierarchical model are in qualitative agreement with
published experimental x-ray patterns for aperiodical phases observed in melt-quenched Mg—Al

and Fe-Nb-B-Si alloys.

1. Introduction

Different theoretical models have been proposed for the
description of the quasicrystal structure, i.e. the structure of
objects exhibiting a forbidden point symmetry of their electron
diffraction patterns. Some models use the formalism of
spaces with higher dimensions, i.e. 4D-space [1], 6D-space, [2]
and 8D-space [3]. Nevertheless, the question ‘Where are
the atoms?’ is still unresolved, for example, this question
is the title of one section in the monograph ‘Quasicrystals’
by Janot [4]. The situation became more complicated after
the discovery of so-called quasicrystals without forbidden
symmetry axes, now these objects are called, with some
precautions, ‘aperiodic phases’.  Such phases have been
discovered in different alloy systems: V-Ni-Si [5], Mg—
Al [6], Fe-Nb—Cu-B-Si [7], Ti-Mn-Si [8]. These phases
exhibit both the cubic point group 432 and aperiodicity of
its electron diffraction patterns. In one case the aperiodical
electron diffraction pattern has been successfully indexed
using a projection method [9]. The present paper reports a
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three-dimensional geometrical model for the structure of the
aperiodic phase having the cubic symmetry.

2. Model

Some time ago the crystal structure of B¢O oxide has been
deciphered as a hierarchical periodical packing of icosahedral
boron clusters with oxygen atoms occupying the holes between
boron clusters [10]. While commenting on this result,
Mackay [11] put forward two important concepts: (1) clusters
of clusters are an alternative to strict crystalline arrangements,
and could form a new type of condensed matter; (2) true
quasicrystals can probably also be described as icosahedral
clusters, themselves clustered icosahedrally in hierarchical
levels, the gaps being filled by the overlapping of these clusters.

Earlier a geometric model was proposed for the 3D-space
structure of icosahedral and decagonal quasicrystals [12, 13]
just in the spirit of these concepts by Mackay. In that model
a building unit for the quasicrystal structure is the hierarchical
dodecahedron assembled from atomic clusters of the two types
shown in figure 1. Both clusters represent projections of the {3,
3, 5} polytope straightened onto 3D-Euclidean space, where

© 2008 IOP Publishing Ltd  Printed in the UK
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Figure 1. Clusters used for assembling the hierarchical icosahedron in the quasicrystal model: single icosahedron (a), intersections of three
icosahedra with D3, symmetry (b) and four icosahedra with T4 symmetry (c). All clusters have been observed experimentally (see the text).
Dashed lines designate the edges of each individual icosahedron which became the inner (‘invisible’) edges of the cluster after the joining of

icosahedra.

the {3, 3, 5} polytope is the 4D-counterpart of the icosahedron
containing a 600 regular tetrahedral cell with 120 vertices
altogether [14].

Single icosahedron (figure 1(a)) is the projection started
from a polytope vertex. A cluster with the D3, symmetry
is the projection started from a cell face (figure 1(b))
while the cluster with the T4 symmetry is the projection
started from a tetrahedral cell (figure 1(c)). All clusters
have been experimentally observed as fragments of the
crystalline structures of certain intermetallic compounds [15].
For example, Djp-cluster forms the hexagonal structures
of AljoMns, AlgMn,Si, AlsCo, and Aly3V4 compounds,
Tg-cluster forms the cubic structures of Ti,Ni, CusZng,
Aly3CrySiy, TheMny3 and Fes W3C compounds. The alternate
joining of Dsp, and Ty clusters along common hexacycles
generates a hierarchical dodecahedron with an edge length
of 0.7-0.75 nm (figure 2). Centers of the Tgy-clusters
form a dodecahedron, while centers of the Ds, clusters
form an icosidodecahedron. Since the dodecahedron and
icosidodecahedron are sections of the {3, 3, 5} polytope, we
can say that joining of these two sections of the {3, 3, 5}
polytope are determined also by the {3, 3, 5} polytope. In other
words for constructing the hierarchical dodecahedron one must
cut off an icosahedral rod from the {3, 3, 5} polytope along
the 6;-symmetry axis of this polytope. In this rod icosahedra
are joined together in the face-to-face mode. Both length
and diameter of this rod are determined by the experiment,
since we are joining together only clusters which have been
observed experimentally. Distortions of tetrahedron edges are
required for straightening of polytope substructures. Necessary
distortions are effected by placing different atomic species in
different vertices.

In turn, this hierarchical dodecahedron sticks together
with similar ones along pentagonal faces (in the face-to-face
mode) thus forming a 3D-projection of the {5, 3, 3} polytope
(a 4D-counterpart of the dodecahedron). This projection is
straightened onto 3D-Euclidean space due to inserting the
disclination network into the polytope space, as was described
by Sadoc and Mosseri [16, 17]. The final hierarchical cluster
has several shells with the hollow dodecahedron shown on
figure 2 at the center. That giant hierarchical icosahedron (not

Figure 2. Cartoon model of the hierarchical dodecahedron
assembled by alternate sticking of D3y, and Ty clusters (see figure 1)
in the face-to-face mode. The photo is taken along a two-fold
symmetry axis.

shown here) has a diameter of about 10 nm and contains several
thousands of atoms. In general, the structure of this hyper-
cluster (‘a collective atom’) is in accordance with the shell
model of a 3D-quasicrystal by Sadoc and Mosseri constructed
as sections of the 8D lattice Eg [3].

Further space filling by such hyper-clusters is possible in
different ways, a periodical packing being included [12, 13].
As distinct to ordinary atoms, these hierarchical cooperative
(pseudo) atoms are packed with the mutual intersection as
was proposed by Mackay [11]. Evidently, point diffraction
patterns from the parallel arrangement of these giant clusters
must exhibit icosahedral symmetry. To tell the truth, in the
case of a periodical packing the lattice period is quite large (of
about 32 nm [12]), so one cannot obtain unambiguous evidence
for this model from the experimental diffraction patterns of
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quasicrystals. Nevertheless this model cluster gives a correct
description of the chemical composition of the quasicrystal and
it is in good accordance with the angle positions of diffraction
peaks on the x-ray patterns [13]. At any rate, this model
gives us a key to construct a similar hierarchical model for
the above mentioned aperiodical phases with cubic symmetry.
Firstly, one must construct a hierarchical octahedron since the
hierarchical principle for atomic packing does not impose any
crystallographic restrictions on the symmetry of a condensed
phase. Secondly, the hierarchical octahedron can be translated
by the FCC lattice generating a 3D-periodical structure.

The unique space subdivision with equal edges has been
used for assembling the hierarchical octahedron. Vertices of
this subdivision belong to two regular point systems (orbits)
of the space group FFm3m. The first orbit is designated as the
Wyckoff position 24(e) for this space group. (In accordance
with the International tables for x-ray crystallography, Wyckoff
positions designate the type of orbit for a given space group
by letters (a, b, ¢, d,...). In our case the Wyckoff position
24(e) for the Fm3m group means that there are 24 points (e)
in the unit cell: six points having coordinates (x;00), (0x;0),
(00x1), (—x100), (0 — x;0), (00 — x1), i.e. they are the vertices
of an octahedron. The remaining 18 points are obtained
from these six points by adding to each point translating
vectors (0, 1/2,1/2), (1/2,0,1/2) and (1/2, 1/2, 0). In other
words, the point x;, 0, O generates points x;, 1/2, 1/2; 1/2 +
x1,0,1/2;1/2 4+ x1,1/2,0 etc.)

The second orbit is the Wyckoff position 32(f). In this
case there are 32 points (f) in the unit cell: eight points hav-
ing coordinates (X7, X2, X2), (—x2, —Xx2, X2), (—X2, X2, —X2),
(X2, —Xx2, —X2), (X2, X2, —X2), (—X2, —X2, —X2), (X2, —X2, X2),
(—x2, x2, x2), i.e. they are the vertices of a cube. The re-
maining 24 points are obtained by adding to each of eight
points the same translating vectors 0, 1/2,1/2;1/2,0, 1/2;
and 1/2,1/2,0. The vertices of the octahedron and the cube
will belong to one rhombic dodecahedron with equal edges if

relations x; = 2x, and x, = % are fulfilled. Since the
center of the thombic dodecahedron occupies the point (0, O,
0), therefore centers of all rhombic dodecahedra form the FCC
lattice. Rhombic dodecahedra are isolated from each other
and are surrounded by octahedra, tetrahedra, trigonal prisms
and parallelepipeds. The enumerated polyhedra form the first
crown for the rhombic dodecahedron (see figure 3). (The first
crown of a given polyhedron is the joining of all polyhedra hav-
ing at any rate one vertex with it.) The center coordinates for
the tetrahedron, octahedron and trigonal prism are respectively:
(1/4,1/4,1/4),(1/2,1/2,1/2) and (1/8, 1/8, 3/8).

This first crown can be used in our model as the
so-called ‘hierarchical octahedron’. In preceding works
only the subdivisions with tetra-coordinated graphs were
considered [18]. In our case more than four edges are meeting
at one vertex.

In the ordinary crystallographic packing of individual
atoms, the edge of this unique subdivision is equal to atomic
diameter d. With typical metallic atom d = 0.3 nm the lattice
period of the FCC structure composed from these hierarchical
octahedra will be equal to 1.117 nm. Lack of a periodicity
on the electron point diffraction pattern of the aperiodic phase

Figure 3. The face-to-face joining of octahedra, tetrahedra, trigonal
prisms and parallelepipeds with equal edges forms this first crown of
the rhombic dodecahedron. This first crown can be regarded as ‘the
hierarchical octahedron’ with the rhombic dodecahedron in the
interior of the ‘the hierarchical octahedron’.

can be due to a larger value of the period of the hierarchical
lattice. Hence, the next step for the model construction must
be a decoration of the vertices belonging to the discovered
subdivision by more complex atomic clusters and not by
individual atoms.

It will be natural to decorate vertices by the clusters which
are the main building units for the crystalline structures of
the phases existing in a given alloy system. In the Mg—Al
system there are many intermetallic compounds with complex
crystal structures, and all these structures are composed from
Frank—Kasper polyhedra (FK) with the coordination numbers
Z = 12, 14, 15 and 16 [19]. In particular, there is the y-
Mg;7Al;; phase which is isomorphic to the o-Mn structure.
At the same time, the aperiodic phase with the same cubic
symmetry 432 has been observed during the devitrification
of some iron-based metallic glasses, and the aperiodic phase
was obtained directly in the melt-quenched state in alloys
with a certain chemical composition [7]. In many cases the
aperiodic phase was observed together with the metastable
phase of the @-Mn. Moreover, the intensity distribution on
the x-ray diffraction patterns of the aperiodic phase and the «-
Mn phase have very much in common [7]. This fact evidences
the intimate structural similarity between phases in the Mg—
Al alloys and in Fe-Nb-B-Si, Fe-Cr—P-C metallic glasses
investigated in [6, 7]. The main building unit for the o-Mn
structure and other phases in the Mg—Al alloys is the truncated
tetrahedron (a Laves—Friauf polyhedron) [19]. We used some
fragments of known intermetallic phases for the decoration
of vertices in the discovered subdivision. Tetrahedral and
octahedral complexes formed by Friauf-Laves polyhedra are
shown in figure 4.

In our decoration, the center of a tetrahedral complex
occupies the tetrahedron center at (1/4, 1/4, 1/4), the center
of an octahedral complex coincides with the octahedron center
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(a) (b)

Figure 4. Tetrahedral (a) and octahedral (b) complexes formed by
Friauf—Laves polyhedra (truncated tetrahedra).

Figure 5. The hierarchical cluster obtained by the decoration of the
hierarchical octahedron (see figure 3) by tetrahedral and octahedral
complexes from figure 4. Connecting rods between complexes are
decorated by chains of Frank—Kasper polyhedra with 14 vertices.

at (1/2,1/2,1/2). The remaining edges of the trigonal prisms
are decorated by rods of the Frank—Kasper polyhedra with 14
vertices, which are fragments of the structure of the ZrsAls
phase [15]. The obtained giant hierarchical octahedron is
shown in figure 5.

3. Comparison with experiment and discussion

In some sense our decoration is similar to the structure model
of the CusCds phase with the giant unit cell. Samson [20]
has composed complexes with the tetrahedral and octahedral
symmetry from the Laves—Friauf polyhedra, i.e. fragments of
the cubic Laves phase (see figure 4) and constructed the cubic
structure of CuyCd; from these complexes. That CusCdj cubic
phase has a lattice period of 2.5871 nm.

The giant octahedron shown in figure 5 generates the
hierarchical FCC structure with the lattice period ranging
from several up to tens of nanometers; it depends on the
size of the tetrahedral and octahedral complexes (numbers
of Laves—Friauf polyhedra in one complex), which can be
varied in certain limits. In the case of the complexes shown
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Figure 6. Calculated x-ray intensity distribution (a) for the cubic
periodic lattice (Miller indices correspond to a = 3.9 nm) assembled
from hierarchical clusters shown in figure 5 and experimental
distribution for the aperiodic phase in the Mg—Al alloy from [6] (b)
with interplanar spacing indicated at each line.

in figure 4 (two Friauf-Laves polyhedra along the edge of
both tetrahedral and octahedral complexes) the period of the
cubic lattice assembled from giant octahedra can be easily
calculated as equal to about 3.9 nm. The calculated intensity
distribution of the x-ray pattern is in qualitative agreement with
experiment (see figures 6 and 7). These x-rays patterns can
be indexed (as shown in figures) with cubic lattice parameters
3.9 nm for both Mg—-Al and Fe-Nb-Si-B aperiodic
phases. With increasing numbers of Friauf—Laves polyhedra
in both tetrahedral and octahedral complexes, the numbers
of atoms in the giant octahedron become quite large and fall
beyond computational possibilities of the computer.

One must note also that our approach allows us to predict
only the types of polyhedra and their sticking mode, but we
can say nothing about the occupation of different vertices by
different atomic species. The actual site occupations influence
the intensity distribution of the diffraction pattern. While
constructing this hierarchical model we simply state that a
larger atom (magnesium in the Mg—Al alloy and niobium in
the Fe-Nb-B-Si alloy) is positioned in the center of the Friauf—
Laves polyhedron. Due to this, one can speak only about the
qualitative agreement of the calculated intensity distribution
with the experimental diffraction pattern, mainly concerned

a =
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Table 1. Calculated and experimental intensity (in arbitrary units) of the x-ray reflections for the cubic aperiodic phase in the Mg—Al alloy.

Reflection 1 2 3 4 5 6 7 8
Diftraction angle (deg) 24 425 435 455 46 48 53 54
Calculated intensity (the hierarchical model) 0.5 63 77 1 5 03 3 4
Experimental intensity from [6] 0.5 31 51 1 3 05 03 03

Table 2. Calculated and experimental intensity (in arbitrary units) of the x-ray reflections for the cubic aperiodic phase in the Fe—-Nb—B-Si

alloy.
Reflection 1 2 3 4 5 6 7 8
Diffraction angle (deg) 50 51 56 585 63 875 925 955
Calculated intensity (the hierarchical model) 43 84 10 3 1 — 0.2 —
Experimental intensity from [7] 30 58 7 1 1 — — —
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Figure 7. The same calculated (a) and experimental [7] (b) x-ray
intensity distributions as in figure 6 for the Fe—-Nb—B-Si alloy. Miller
indices at (a) correspond to the cubic periodic lattice with
a=3.9nm.

only with the two strongest reflections. A comparison of the
calculated and measured intensities of the x-ray reflections (in
arbitrary units) is shown in table 1 for the Mg—Al alloy and in
table 2 for the Fe-Nb-B-Si alloy.

The suggested model is conceptually similar to the
hierarchical models of icosahedral and decagonal quasicrystals
proposed in [12, 13]. In any case, the assembling of the
structure from giant hierarchical clusters coincides with the

Mackay principle for the organization of ordered (not only
crystalline) structures. Also one must note that Sadoc and
Mosseri [3] have considered the existence of ‘a tetrahedral
quasicrystal’ as projected from the eight-dimensional FEjg
lattice.

4. Conclusion

(1) A model structure of the aperiodic cubic phase (‘a cubic
quasicrystal’) can be constructed as a periodical packing
of hierarchical clusters with 432 symmetry. These cluster
were composed of truncated tetrahedra (Laves—Friauf
polyhedra) and rod chains of Frank—Kasper polyhedra
with 14 vertices.

(2) The calculated x-ray diffraction patterns for the proposed
hierarchical model are in qualitative agreement with the
experimental x-ray patterns for the aperiodical phases
observed in the melt-quenched Mg—Al and Fe-Nb-B-Si
alloys.

(3) The assembling of the structure of the aperiodic cubic
phase from giant hierarchical octahedral clusters coincides
with the concept of the assembling of icosahedral and
decagonal quasicrystals from hierarchical icosahedral
clusters, both models are a realization of the Mackay
principle for the hierarchical organization of ordered (not
only crystalline) structures.

(4) The construction of the hierarchical model for the cubic
aperiodic phase became possible due to the discovery of a
new space subdivision with equal edges. The vertices of
this subdivision belong to two orbits of the space group
Fm3m. The subdivision is characterized by unique values
of the coordinates of starting points of two orbits and the
unique relationship between coordinates.
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